Properties of Strong Regularity of Fuzzy Measure on Metric Space
نویسنده
چکیده
Abstract: The purpose of this paper is to discuss the properties of regularity and strong regularity of fuzzy measure on metric spaces following the previous results. Some properties are defined with the help of nulladditivity such as inner\outer regularity and the regularity of fuzzy measure. We define the strong regularity of fuzzy measures and show our result that the null-additive fuzzy measures possess a strong regularity on complete separable metric spaces.
منابع مشابه
Regularity Properties of Null-Additive Fuzzy Measure on Metric Spaces
We shall discuss further regularity properties of null-additive fuzzy measure on metric spaces following the previous results. Under the null-additivity condition, some properties of the inner/outer regularity and the regularity of fuzzy measure are shown. Also the strong regularity of fuzzy measure is discussed on complete separable metric spaces. As an application of strong regularity, we pre...
متن کاملSome topological properties of fuzzy strong b-metric spaces
In this study, we investigate topological properties of fuzzy strong b-metric spaces defined in [13]. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_{1}times X_{2}$ is a complete fuzzy strong b-metric space if and only if $X_{1}$ and $X_{2}$ are complete fu...
متن کاملFurther properties of null-additive fuzzy measure on metric spaces
We shall continue to discuss further properties of null-additive fuzzy measure on metric spaces following the previous results. Under the null-additivity condition, some properties of the inner/outer regularity and the regularity of fuzzy measure are shown. Also the strong regularity of fuzzy measure is discussed on complete separable metric spaces. As an application of strong regularity, we pr...
متن کاملOrder intervals in the metric space of fuzzy numbers
In this paper, we introduce a function in order to measure the distancebetween two order intervals of fuzzy numbers, and show that this function isa metric. We investigate some properties of this metric, and finally presentan application. We think that this study could provide a more generalframework for researchers studying on interval analysis, fuzzy analysis andfuzzy decision making.
متن کاملFUZZY GOULD INTEGRABILITY ON ATOMS
In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...
متن کامل